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Executive Summary

Our project is a self-sponsored project in which we construct an autonomous quadrotor
flying vehicle that is capable of identifying and tracking targets. We present a new design
for a low-cost quadrotor chassis that is modular and scalable. It can be created with current
rapid-prototyping technologies such as the personal 3D printer and the water-jet cutter. To
demonstrate the feasibility of constructing such a quadrotor, we have selected and procured
several commercial off-the-shelf components including the motors, microprocessor, inertial
measurement unit, battery, and rangefinder. The scale of the quadrotor is comparable to
commercial remote-controlled aircraft, at about 50 cm wide. Using lightweight components
such as carbon fibre chassis and lithium polymer battery, the quadrotor is light in weight
and weighs 1.3 kg fully loaded.

The control systems requisite for stable flight are explored. The objective of autonomous
flight is achieved by using computer algorithms to independently control the thrust mag-
nitude of each motor depending on feedback from the inertial measurement unit. Due to
the nature of the quadrotor design, this is sufficient for manoeuvring in all axes (hovering,
vertical takeoff and landing, yaw, pitch, roll, etc) and requires no extra moving parts. The
flight software is directly obtained from the AeroQuad project, an open-source software suite
for remote-controlled quadrotors.

The project features the novel use of an onboard digital camera in conjunction with image
processing software to detect and avoid obstacles. Because machine vision is computation-
ally expensive, the processing is offloaded to an external computer. The downward-facing
digital camera on the quadrotor chassis feeds a real time video feed wirelessly to an external
computer which applies one of three modes of image processing and returns commands to
the quadrotor via a Bluetooth connection.

The ultimate goal of fully autonomous flight wherein the quadrotor can automatically
detect and follow targets is achieved partially: we were able to develop a working quadro-
tor prototype and working computer vision software, but were unable to integrate the two
systems due to limited time.
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1 Introduction

Quaffle is the project name for a new quadrotor unmanned aerial vehicle (uav). Our
project focuses on the complexity of developing such a machine and developing an onboard
object recognition system that enables it to detect obstacles or search for targets.

1.1 Organisation of project report

This report will detail all the essential parts of the project that are necessary for developing
a quadrotor and computer vision.

The development of this project will be separated into four main parts, flight control
software, object recognition software, quadrotor mechanical design and the electronic com-
ponents on the quadrotor. The flight control software section will include the description of
how the quadrotor flight mechanics work and what is required for the software to control
it. It will include a discussion on the Kalman filter algorithm that is used to filter noise
in the electronic instruments and a description of the open-source AeroQuad software that
we integrated to our quadrotor. The object recognition software part will include the main
features we implemented and the algorithms behind the software. The quadrotor mechanical
design section will include our design specification, choice of materials, and analysis on the
mechanical system. The electronics section will justify our decisions in choosing the com-
mercially available electrical parts and how we integrate all the electronics together in our
quadrotor.

The section on the testing protocol will include tools we used for electronics test, calibra-
tion and pid tuning. It will also include section on and our indoor flight test. The results
section will include the analysis on the design of the quadrotor and object recognition soft-
ware. A description of the outcome of testing will be included in the results section, as well
as a discussion on issues we have faced for this project. The most important results on the
design of the quadrotor and object recognition software are summarised in the conclusion
section.

The project deliverables section will include what will be delivered at the end of the
project, financial summary, as well as ongoing commitment after the project is finished. Fi-
nally, the recommendation section will discuss potential further improvements to the Quaffle
project.

1.2 Background and motivation

Quadrotors have been in existence ever since the 1920s when pioneers Etienne Omichen,
George de Bothezat, and Ivan Jerome constructed the first quadrotors in history. However,
the early attempts suffered from several drawbacks preventing widespread adoption, such as
pilot workload and power-to-weight ratio. As such, for the most part of the 20th century
they were relegated to only being a novelty with no practical use.

In the 21st century, quadrotors have seen a resurgence in popularity, primarily as small,
unmanned remote-controlled aircraft for both military and civilian use. With the prolifera-
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tion of affordable electronics such as digital cameras and computer microcontrollers, all the
drawbacks that plagued the older designs are resolved. The concerns of pilot workload were
solved by using a cheap computer microchip, such as the open-source Arduino, to finely
control the thrust of each rotor; and the issue of power was solved by using efficient brush-
less electric motors on a chassis made from lightweight composite materials. Advances in
computer vision technology also herald a new generation of autonomous quadrotors which
may use image processing techniques to analyse their environment and make decisions on
their own.

There are many advantages to using a quadrotor compared to other aircraft such as
helicopters and fixed-wing aircraft. Compared with helicopters, a quadrotor has a simpler
mechanical design since the rotors do not tilt and there is no need for the complex linkages and
shafts in a helicopter swashplate - instead, a quadrotor can manoeuvre in all degrees of free-
dom simply by varying the thrust of each rotor. The quadrotor typically has counter-rotating
propellers which cancel each other’s angular momentum and angular thrust, negating the
need for an additional tail rotor. Since there are four main rotors, a quadrotor’s propellers
each have less kinetic energy than a single helicopter rotor for the same total lift, reducing
the chance of serious accidents or injury. Meanwhile, compared with fixed-wing aircraft,
rotorcraft such as quadrotors have the obvious advantage of vertical take-off and landing,
the ability to hover in one spot, and superior manoeuvrability in low-speed situations.

These advantages render unmanned quadrotors ideal for many purposes, such as surveil-
lance, aerial photography, cargo transport.

1.3 State of the art

1.3.1 Flight control

Modern technology has enabled very affordable components and software for building quadro-
tors. Of the many attempts at creating a quadrotor, some projects are open-source and in-
tended for a do-it-yourself (DIY) audience, such as Arducopter and AeroQuad. Arducopter
is a family of autopilot multi-rotorcraft designed to be controlled by an Arduino microcon-
troller, with a wide array of features for uav purposes including stabilised control, positioning
hold using a global positioning system (GPS), altitude hold, automated takeoff and land-
ing, waypoint programming, mounted camera stabilisation, telemetry display, and mission
planning. AeroQuad is another project comprising of a software suite to control an Ar-
duino quadrotor aircraft. Whilst AeroQuad does not support fully autonomous flight as
Arducopter does, it implements several key functionalities such as stable hovering and con-
trol. Both AeroQuad and Arducopter are compatible with custom-designed quadrotors as
long as they use a compatible Arduino microcontroller, sensors, and motors.

1.3.2 Obstacle detection

Using sensors such as a GPS, rangefinder, and barometer, a quadrotor is capable of position-
ing itself and perform simple autonomous tasks such as flying from one position at point A to
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Figure 1: Block diagram illustrating control system of Quaffle.

another at point B. Assuming that the path between A and B is free of obstacles, a quadrotor
may simply fly in a straight line. However, if obstacles exist between A and B, the task of
navigating around them becomes nontrivial. Presently, there is much research being done in
this area. At the University of Pennsylvania, Daniel Mallinger et al has created a motion-
tracking system allowing indoor quadrotors to perform aggressive and accurate manoeuvres
such as navigating around obstacles and landing at oblique angles [1]. He has also created a
system for multiple quadrotors to coordinate together in tasks such as building a structure.
Another similar project is at the Institute for Dynamic Systems and Control of the Swiss
Federal Institute of Technology at Zurich, which likewise allows aggressive manoeuvres and
coordination between multiple quadrotors [2].

However, these projects rely on external sensors, which severely limits the practical ap-
plications of the technology in outdoors situations. Hence, it is necessary to develop an
onboard sensor system that allows the quadrotor to independently detect obstacles and au-
tomatically establish the correct flight path. Part of our research will focus on developing
object-recognition technology that enables the quadrotor to detect obstacles using only a
normal onboard digital camera.

1.4 Scope of project

The project Quaffle will involve two main parts: building a stable flying quadrotor and
implementing an onboard sensor system that can detect obstacles. The stability of a flying
quadrotor requires a complete control system with feedback (Figure 1), consisting of input,
controller, actuator, sensors, disturbance, and output.

The input of this control system can be a radio remote controller or a wireless com-
mand from a computer. The controller used in Quaffle is an Arduino Mega processor. The
actuator consists of four brushless electric motors which are each controlled by an indepen-
dent electronic speed controller (ESC). The sensors consist of an inertial measurement unit,
barometer, and rangefinder. A GPS module is not included in Quaffle, although we may
add it in the future. The outputs of the control system are the quadrotor position and ori-
entation, as well as their derivatives, including velocity, acceleration, angular velocity, and
angular acceleration.

In order to recognize and trace targets, the software that we are developing needs to not
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Figure 2: Coordinates for representing position and orientation of the quadrotor in three
dimensions.

only recognize image fast since Quaffle will fly at a high speed, but also recognize object with
a high accuracy. With the amount of time given, we chose to use Open Source Computer
Vision (OpenCV) library, because it is free to use with many powerful features built in. Since
OpenCV works best with C++ or C#, we chose C# to work with since C# has more APIs
built in to work with than C++. During the development of this software, Visual Studio
2010 has been used since it allows us to debug in real time while implement the software.

2 Design of the quadrotor

2.1 Flight control software

2.1.1 Theory of flight control

A quadrotor can have movement in 6 degrees of freedom by just altering the speed of each
of its four rotors. All four rotors provide lift to the quadrotor. Since the rotors are in
two counter-rotating pairs, the angular momentum is cancelled in regular operation. The
position and orientation of the quadrotor can be expressed using the generalised coordinate
system:

longitudex, latitude y, altitudex, roll θ, yaw φ, pitchψ, (1)

where the tuple x, y, z represents the centre of mass position in Cartesian coordinates and θ,
φ, and ψ are Euler angles that represent the orientation (Figure 2). To obtain position x and
y we require a GPS module; for altitude z we can use a rangefinder (for low altitudes) or a
barometer (for high altitudes). To obtain the Euler angles, we use the inertial measurement
unit, which includes an accelerometer, gyrometer, and magnetometer.

To control the quadrotor we will first assume that the quadrotor has its centre of mass at
its geometric centre. Three modes of flight operation [5] are illustrated in Figure 3. To hover
or fly upwards, the rotors are simply powered on at the same speed. To yaw clockwise or
counterclockwise, the rotor pair spinning in one direction will be set at a higher speed than
the pair spinning in the opposite direction. To move horizontally, the quadrotor tilts towards
its direction of motion by adjusting roll and pitch. When the quadrotor is thus tilted, the
rotors provide also a horizontal component of force, enabling horizontal movement. Since
the dynamics of rotor thrust is not linear (Section 2.4.4) and the mass distribution of the
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Figure 3: Modes of movement by adjusting rotor speed. From left to right: Hover/move up
and down; Yaw right; Move forward (↓).

quadrotor and moment of inertia can be complex, we use pid control with proportional gain,
integral gain, and derivative gain. The inertial measurement unit (Section 2.4.3) reports the
acceleration, angular acceleration, and the orientation of the quadrotor.

2.1.2 Kalman filter

The inertial measurement unit is susceptible to noise due to mechanical vibrations, electrical
and thermal noise, etc. Hence, using the imu for feedback control requires some noise filtering
to mitigate spurious readings. We employ a software Kalman filter for this purpose.

The Kalman filter is an iterative filtering algorithm that predicts the output using mea-
surement history. It consists of two major steps when used for sampling data: the prediction
step and correction step. The ultimate goal of these two steps are used for calculating a
value known as the Kalman gain. The greater the Kalman gain, the more confidence will be
placed on the measured value; conversely, with a smaller Kalman gain, the output will be
weighted more towards the predicted result.

To speed up our development process, we utilise the Kalman filter library provided by
AeroQuad. The generic implementation of a Kalman filter algorithm is as such[3]:

1. Read previous measurements/predictions.

2. Calculate predicted value x(t) = Ax(t− 1) +B · u.

3. Read new measured value.

4. Compute new measured value and predict value difference.

5. Calculate covariance.

6. Calculate the Kalman gain.

7. Correct prediction.

8. Calculate covariance of prediction error.
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2.1.3 AeroQuad

The bulk of flight control implementation for Quaffle uses AeroQuad. AeroQuad is an open-
source project for remote-controlled quadrotor development. One of the reasons why we
chose AeroQuad is because it is very flexible for configuring the software to suit different
systems. AeroQuad has an extensive feature list relevant to our needs [9]:

• Multiple flight configurations are supported:

– Quad ×, Quad +, Quad Y4

– Tri, Hex ×, Hex +, Hex Y6

– Octo ×, Octo + and Octo ×8

• Multiple flight angle estimation algorithms supported:

– dcm (best with magnetometer)

– arg (best with no magnetometer)

– marg (experimental)

• Flight options supported:

– Heading hold with magnetometer or gyro

– Altitude hold with barometer

– Altitude hold with ultrasonic sensor (best for low altitude hold and terrain fol-
lowing)

• Enhanced battery monitoring options:

– Enable auto descent

– Specify battery cell count

– Integration with On Screen Display (osd)

• Multiple receiver options:

– 6 or 8 channel receivers supported

– PWM receivers

– PPM receivers

– PPM using hardware timer

• Telemetry options:

– Wireless telemetry on dedicated serial port

– OpenLog binary write
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• Camera stabilization support:

– Dedicated servo channels for roll, pitch, yaw

• Custom osd support for MAX7456:

– Specify video standard to use

– Specify callsign to display

– Built in attitude indicator

– Display altitude in feet/meters

– osd system which allows remote pid tuning

• Advantages with the AeroQuad software architecture:

– Easier troubleshooting of hardware with individual tests programs for each sensor.

– Updated task scheduler to clearly define timing of critical tasks

– Sensor classes are separated into their own libraries. If you want to add a new
sensor, add a library based on

– the defined functions for seamless integration into the flight software

– Flight control functions are also separated into their own libraries with well defined
interfaces and properties such that if new features are added or enhanced, there
will be minimal impact to the overall Flight Software performance.

We use the following AeroQuad configuration for Quaffle:

• Quad+

• dcm (with magnetometer)

• Altitude hold with barometer

• 6 channel receivers support

AeroQuad also provides a graphical user interface on PC to help the user configure the
quadrotor, calibrate sensors, and tune pid values. With this feature, we are able to quickly
set up our robot to test flight after putting together all mechanical and electrical components.

2.2 Object recognition software

2.2.1 Overview of object recognition

Object recognition is instrumental in Quaffle to enable to detect and avoid obstacles as
well as interact with targets. We use the OpenCV library, an open-source image processing
library to implement computer vision in Quaffle. The object recognition is offloaded from
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Quaffle onto a personal computer such as a laptop, using a wireless digital video camera
mounted on Quaffle that is capable of transmitting video in real time.

Object recognition programs typically store certain templates (slave images), of items
that it is intended to detect, and attempt to detect and locate these items in an input
image frame (master images). The object recognition software in Quaffle takes real time
images from the digital video camera as input and process each frame using computer vision
algorithms to determine whether or not the current frame contains the object it is attempting
to detect. The output, if the algorithm succeeds in detecting the object, is simply the
coordinate pair x, y indicating the position of the object in the frame.

Three modes of object recognition have been developed: a general purpose object recog-
nition algorithm for finding any pattern using speeded up robust feature (surf) and scale
invariant feature transform (sift) method; facial recognition using Haar-like features (hlf);
and laser tracking using brightness differences. The basic software flow is described in Figure
4 and each of the three modes of object recognition will be separately discussed and analysed
in Sections 2.2.3, 2.2.4, and 2.2.5. The user may choose any one of the modes to use.

2.2.2 Image capture from camera

To process the real time video, individual frames must be captured from the camera. In
Figure 5, the code snippet for handling this is shown. Once the start camera button is
clicked, a new instance of the Capture object is created, if it has not already been created.
The class Capture is implemented in a built-in library within EMGU.CV.Util that captures
images from any camera and video source.

Once the camera is started, an internal timer that is bundled to the camera is also started
and set to tick once every 40 ms. In other words, the camera will take a picture every 40 ms,
supplying images at a framerate of 25 fps. The framerate is chosen to be as high as possible
without overloading the processor due to the limitations in computing power available to us.
A lower framerate is not desired since it will cause the system to less responsive.

At the instance the image is taken, the algorithm will try to match the image to the
master image that is previously stored in the program with any of the three methods that
will be described in Sections 2.2.3, 2.2.4, and 2.2.5.

2.2.3 Object recognition using SIFT and SURF

A major library in OpenCV is the sift library, which stands for scale invariant feature
transform. For any object in the image, interesting points on the object can be extracted to
provide a good feature description of the object. These points, extracted from the master
image, can then be used to identify the same object when it is in a test image containing many
other objects. Given any master image, this method is able to detect, match, and describe
local features that are similar in the master and slave images. The sift algorithm stores the
interesting features of the master image and those of the slave image using a matrix for each.
This allows transformations on these features to be done by means of matrix operations.
Operations such as scaling, transposition, and rotation can be performed easily - hence the
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Figure 4: Flowchart illustrating the procedure for object recognition.
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1 pr i va t e void btnStartCam Click ( ob j e c t sender , EventArgs e )
{

3 t ry
{

5 #reg ion i f capture i s not created , c r e a t e i t now
i f ( capture == nu l l )

7 {
t ry

9 {
capture = new Capture ( ) ;

11 }
catch ( Nul lRe ferenceExcept ion excpt )

13 {
MessageBox . Show( excpt . Message ) ;

15 }
}

17 #endreg ion

Figure 5: Code snippet for fetching current frame from video feed.

sift has the desirable quality of being scale and rotation invariant, meaning that it can
successfully detect objects even when they are rotated and scaled to different sizes.

Prior to implementing real time object recognition, we developed a simple program to
use the sift method on still images (Figure 6). Testing with various images showed that the
algorithm performs with great accuracy and precision, albeit with long computation time.
In this the test shown in the figure, the slave image was simply cropped from the master
image and rotated. As seen in Figure 6, 1473 ms elapsed to locate the slave image (top
right) in the master image. The slow speed of the algorithm makes it unsuitable for real
time object recognition that is required for a quadrotor, hence, instead of sift, we use the
surf method.

The speeded up robust feature (surf) method is extremely similar to sift, but is about
ten times faster as its name implies. For a typical 1080p (1920 × 1080 pixels), the software
is able to detect and recognise the object within 30 ms on average. In Figure 7 the code for
implementing object recognition using surf is shown. As seen in Figure 7, the software stores
interesting points in the variable observedKeyPoints, which are then mapped to a matrix
named observedDescriptors. To match the two matrices, we employ a built-in brute force
matching object in OpenCV called BruteForceMatcher. Finally, Features2DTracker is
used to confirm thet uniqueness of the interesting points found. Notice also that Figure 7
includes a stopwatch to measure the speed of the algorithm. The final time will be displayed
on the graphical user interface (gui) for the convenience of the user. In addition, if the
computing time is longer than 80 ms (which is double the duration for the video frame as
explained in Section 2.2.2), the current image recognition process will be aborted to conserve
computational resources. The reason is that, if all of the images take more than 80 ms to
process, the program would become unresponsive.

Once the object is found, the position of the found object will be returned, and it will
be drawn on the gui to be displayed to the user. In the demo program, the user may train
the software on the object to recognise by simply drawing on the master image displayed
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Figure 6: Screen capture showing the demo program for object recognition using the sift
method.

in the gui to select the region of the camera frame to save as the slave image. As seen in
Figure 8, the software is able to recognise four different objects simultaneously with less than
two-thirds CPU usage on an Intel Core 2 Duo computer.

2.2.4 Facial recognition using HLF

The method of Haar-like features hlf is a pattern recognition pattern designed specifically
for facial recognition. A Haar-like feature takes adjacent rectangular regions at a specific
location on an image, and computes the sum of pixel intensities in that region and calculate
the differences between them. These differences will then be sued to categorise the subsec-
tion, which is then itself subdivided into smaller subsections. The recursive operation of
the algorithm allows it to be very fast. The hlf method is specifically written for facial
recognition because it is well known that the darkest region on a human face is the eyes
and the brightest region is the cheek area. A common Haar-like feature for generic facial
detection would put two rectangular boxes above the eye and cheek area. The total triangle
made by these three boxes would represent the area of the human face.

However, facial detection is not the same as facial recognition, since it cannot distinguish
between different faces. Fortunately, it is also possible to use the Haar method to recognise
different faces. The program stores an image of a known face to a database, and then invokes
a neural network built into OpenCV in a separate thread to start extracting information
about the new face that the program has just learnt (e.g., the ratio of the distance between
the two eyes to the distance between the eyes and nose). All this information is then stored
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1 watch = Stopwatch . StartNew ( ) ;

3 // ex t r a c t f e a t u r e s from the observed image
observedKeyPoints = surfCPU . DetectKeyPointsRaw ( observedImage , nu l l ) ;

5 Matrix<f l o a t> obse rvedDesc r ip to r s = surfCPU . ComputeDescriptorsRaw ( observedImage , nu l l ,
observedKeyPoints ) ;

7 BruteForceMatcher matcher = new BruteForceMatcher ( BruteForceMatcher . DistanceType . L2F32 ) ;
matcher .Add( mode lDescr iptors ) ;

9 i n t k = 2 ;
i n d i c e s = new Matrix<int >( obse rvedDesc r ip to r s . Rows , k ) ;

11 d i s t = new Matrix<f l o a t >( obse rvedDesc r ip to r s . Rows , k ) ;
matcher . KnnMatch( obse rvedDescr iptor s , i nd i c e s , d i s t , k , nu l l ) ;

13

mask = new Matrix<byte>( d i s t . Rows , 1) ;
15

mask . SetValue (255) ;
17

Features2DTracker . VoteForUniqueness ( d i s t , 0 . 8 , mask ) ;
19

i n t nonZeroCount = CvInvoke . cvCountNonZero (mask ) ;
21 i f ( nonZeroCount >= 4)
{

23 nonZeroCount = Features2DTracker . VoteForSizeAndOrientation (modelKeyPoints ,
observedKeyPoints , i nd i c e s , mask , 1 . 5 , 20) ;

i f ( nonZeroCount >= 4)
25 homography = Features2DTracker . GetHomographyMatrixFromMatchedFeatures (

modelKeyPoints , observedKeyPoints , i nd i c e s , mask , 3) ;
}

27

watch . Stop ( ) ;

Figure 7: Code snippet for surf method.
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Figure 8: Screen capture showing the demo program for object recognition using the surf
method. Two different objects are being detected and tracked in real time simultaneously.
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Stopwatch watch ;
2 // St r ing faceFileName = ” ha a r c a s c a d e f r o n t a l f a c e d e f a u l t . xml ” ;

S t r ing faceFileName = ” ha a r c a s c a d e f r o n t a l f a c e a l t . xml” ;
4 St r ing eyeFileName = ” haarcascade eye . xml” ;

6 //Read the HaarCascade ob j e c t s
us ing ( HaarCascade f a c e = new HaarCascade ( faceFileName ) )

8 us ing ( HaarCascade eye = new HaarCascade ( eyeFileName ) )
{

10 watch = Stopwatch . StartNew ( ) ;
us ing ( Image<Gray , Byte> gray = image . Convert<Gray , Byte>() ) //Convert i t to

Graysca le
12 {

// normal i ze s b r i gh tne s s and i n c r e a s e s con t ra s t o f the image
14 gray . Equa l i z eH i s t ( ) ;

16 //Detect the f a c e s from the gray s c a l e image and s t o r e the l o c a t i o n s as
r e c t ang l e

//The f i r s t d imens iona l i s the channel
18 //The second dimension i s the index o f the r e c t ang l e in the s p e c i f i c channel

f a ce sDetec t ed = fa c e . Detect (
20 gray ,

1 . 1 ,
22 10 ,

Emgu .CV.CvEnum.HAAR DETECTION TYPE.DO CANNY PRUNING,
24 new S i z e (20 , 20) ) ;

}
26 watch . Stop ( ) ;
}

Figure 9: Code snippet for hlf method.

in an xml file for future use.
A code snippet for using hlf to detect faces is shown in Figure 9. As can be seen, the

generic face template haarcascade frontface alt.xml is loaded before using the Haar’s
face method. Once the database is loaded, the program has all the information for hlf to
recognise a human face. A HaarCascade object is initialised twice for face and eye. The
built-in function from OpenCV library Detect is used to check if any face is detected in
the current captured frame. Two parameters can be set to tune the speed and accuracy
of the face detection algorithm. The Detect function takes in as arguments the colour of
the image, accuracy of detection, the number of times to iteratively run face detection, the
detection type, and size of image stored. The value we are using for accuracy is 1.1, which
allows the program to yield the correct result 70% of the time. The accuracy is not very
high, but to increase the accuracy would require extra computational power. In order to
increase the accuracy of face detection, we run it ten times for each image. This improves
the consistency of recognising the same face correctly. Once a face is drawn, the location of
the face is returned and a rectangle is drawn in the gui outlining the face (see Figure 10,
showing two faces being recognised concurrently with just over half of CPU usage).
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Figure 10: Screen capture showing the demo program for facial recognition using the hlf
method. Two different faces are being detected and tracked in real time simultaneously.

2.2.5 Laser tracking

Laser tracking is a mode whereby the software can follow a laser beam shining on any surface.
The goal for laser tracking is to allow Quaffle to track any target on the ground simply by
shining a laser on it. This useful for two reasons: first, a human operator can instruct Quaffle
to follow a target by pointing a laser beam at it; second, we can use this to debug Quaffle’s
ability to follow targets.

2.2.6 Integration with flight control

So far in Sections 2.2.3, 2.2.4, and 2.2.5 we have described how the various computer vision
algorithms identify and locate the target as a set of coordinates on the camera image frame.
To connect this with the quadrotor Quaffle, we implement a serial class to communicate
with the Arduino Mega microcontroller on Quaffle. Quaffle is equipped with a Bluetooth
shield that enables communication with other Bluetooth-enabled devices such as a laptop
computer. The serial class is initiated on program startup with a user-specified com port for
communicating with Quaffle. The location of the recognised image is then sent in real time
to Quaffle in a specific format: The x and y coordinates are sent as two integers representing
the percentage ratio they are to the width and height of the image respectively. In Quaffle,
the Arduino board may then process the information and use them as needed.
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1 pub l i c void LaserTracking ( )
{

3 bool br ightnessFound = f a l s e ;
f l o a t b r i g h t e s t = 0 ;

5 i n t xPos = 0 , yPos = 0 ;

7 f o r ( i n t y = 0 ; y < curCameraBM . Height ; y += 5)
{

9 f o r ( i n t x = 0 ; x < curCameraBM .Width ; x += 5)
{

11 byte red , green , b lue ;
red = curCameraBM . GetPixel (x , y ) .R;

13 green = curCameraBM . GetPixel (x , y ) .G;
blue = curCameraBM . GetPixel (x , y ) .B;

15

f l o a t b r i gh tne s s = (299 ∗ red + 587 ∗ green + 114 ∗ blue ) / 1000 ;
17

i f ( b r i gh tne s s > th r e sho ld )
19 {

i f ( b r i gh tne s s > b r i g h t e s t )
21 {

b r i g h t e s t = br i gh tne s s ;
23 xPos = x ;

yPos = y ;
25 brightnessFound = true ;

}
27 } // ( b r i gh tne s s > mForm . th r e sho ld )

} // x loop
29 } // y loop
}

Figure 11: Code snippet for laser tracking.

Figure 12: Screen capture showing the successful location of laser beam.
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Point middle = new Point (0 , 0) ;
2 s t r i n g s e r i a lOut = ”” ;

f o r each (MCvAvgComp f in face sDetec t ed )
4 {

middle .X = f . r e c t . Locat ion .X + f . r e c t .Width / 2 ;
6 middle .Y = f . r e c t . Locat ion .Y + f . r e c t . Height / 2 ;

8 double Xprop = (100 ∗ middle .X / curCameraBM . S i z e .Width ) / 10 ;
double Yprop = (100 ∗ middle .Y / curCameraBM . S i z e . Height ) / 10 ;

10 // s e r i a lOut = ”x” + Xprop . ToString (”N0”) + ”y” + Yprop . ToString (”N0”) ;

12 s e r i a l . Write ( s e r i a lOut ) ;
}

Figure 13: Code snippet for serial communication from object recognition software to Quaffle.

2.2.7 Multithreading

Computational performance is of utmost importance to computer vision software since im-
age processing is highly computationally intensive, but computer vision requires real time
performance. The hlf method, for example, can take up to 500 ms to process a single
frame, and the resulting 2 fps frame rate is far too slow for successful implementation in
a flying machine. Fortunately, there are ways to improve the performance of the program
by multithreading. The latest version of the software launches a new thread every time a
frame is taken, so that if the algorithm gets stuck analysing a certain frame, then subsequent
frames are not affected. Tests on an Intel Core 2 Duo laptop indicate that the program is
able to recognise four images simultaneously with no significant amount of delay.

With multithreading, synchronisation can be an issue. Since 25 threads are created per
second, each thread needs to fetch the resource of the master image at different times. A
central manager algorithm has been developed to manage each thread to process in order.
Moreover, a synchronous program method has been adopted, so that when one thread is
accessing some resource, the resource is locked and only available to that particular thread.
If another thread attempts to access the same resource, a copy of that resource will be made
to be used on the second thread.
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Figure 14: Photograph of completed Quaffle prototype.

2.3 Mechanical design

2.3.1 Overview of design

The chassis of Quaffle is designed to be rigid but lightweight. It consists primarily of car-
bon fibre tubes connected at the corners by 3D printed plastic parts and at the centre by
polycarbonate and aluminium components fabricated using a water-jet cutter. The design
emphasizes modularity and scalability as well as low cost and ease of fabrication and assem-
bly. The size of the quadrotor can be easily changed by using carbon fibre tubes of different
lengths, and the central assembly can be expanded to install additional instruments simply
by adding more layers on top.

2.3.2 Carbon fibre tubes

Carbon fibre tubes were selected because of their strength and light weight. Quaffle uses two
different types of circular carbon fibre tubes: a thicker tube for the main quadrotor arms and
four thinner auxiliary tubes connecting them to each other. The four arms are constructed
using cellophane-wrapped unidirectional carbon fibre tubes with an outer diameter of 14.04
mm and an inner diameter of 12.45 mm. In between each pair of two adjacent arms, a
thinner unidirectional carbon fibre tube (diameter 4.76 mm) connects them near the end
(Figure 16. The purpose of these tubes is twofold: first, when combined with the quadrotor
corner part in Section 2.3.3, they ensure that the motors point upwards since otherwise there
is no easy way to do so given the circular cross-sectional profile of the arms; second, they
add strength to the entire chassis and mitigate low-frequency vibrations.

Since the corner components (motor and landing gear) are not connected to the central
assembly except through the carbon fibre tubes, adjusting the lengths of the carbon fibre
tubes allows one to change the size of the entire quadrotor without having to redesign the
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Figure 15: Schematic of Quaffle chassis not including motors, rotors, and electrical compo-
nents. Units are in millimetres.
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Figure 16: Diagram indicating the position of carbon fibre tubes on the Quaffle chassis.
Highlighted in red are the main arms (left) and the auxiliary tubes (right).

Figure 17: Results of finite-element analysis of carbon-fibre tube used in main arm. For an
applied force of 10 N, the maximum deformation (left) is approximately 0.9 mm and the
maximum Von Mises stress (right) is 29 MPa. The deformation scale here in this figure is
approximately 32.68. The material properties are listed in Table 1. The simulation was done
using Solidworks 2012.

other components. For our project, the desired diameter of Quaffle was approximately 60 cm
excluding rotors; hence, we used the length of 300 mm for the four main arms (Figure 15).
The thinner auxiliary carbon fibre tubes connect the corners diagonally and, by geometry,
are approximately

√
2 times the length of the main arm. However, in reality our design

allows the arms to extend slightly beyond the motors and the quadrotor corner part (Section
2.3.3) also extends sideways, hence the length of the auxiliary tubes used is 366 mm. In
general, the relationship between the lengths of the carbon fibre tubes can be described in
the following way:

l =
√

2L− 58 mm (2)

where L is the length of the main arms and l is the length of the auxiliary tubes.
The material properties of the unidirectional carbon fibre tube in Table 1 means that

the 14.04 mm carbon fibre tube used in the main arm of the quadrotor is more than strong
enough for our purposes. As seen in Figure 17, under 10 N of load, the arm does not deform
more than 0.9 mm and the maximum Von Mises stress is 29 MPa, giving a factor of safety
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Table 1: Mechanical properties of unidirectional carbon fibre tubes [4].
Property Value
Density 1.60 g/cc
Young’s modulus (axial) 135 GPa
Young’s modulus (transverse) 1 GPa
Ult. tensile strength (axial) 1500 MPa
Ult. compressive strength (axial) 1200 MPa
Ult. tensile strength (transverse) 50 MPa
Ult. compressive strength (transverse) 250 MPa

of more than 30. The motors are not capable of producing more than 10 N of thrust, so
the design is strong enough. Furthermore, this simulation did not take into account the
contribution from the auxiliary tubes, so it is likely to underestimate the strength of the
design.

2.3.3 3D-printed components

Quaffle features several parts fabricated by a 3D printer. 3D printing is both affordable
and capable of very complex parts which would otherwise require specialised machine tools
or assemblies of multiple components. The Engineering Physics Project Lab owns an Up!
personal portable 3D printer that is capable of printing in layers of 0.20 mm thick (Figure
19). Using 3D printer technology, we were able to create a part hereafter known as the
quadrotor corner. Each of the four quadrotor corners joins the its corresponding main arm
with the adjacent auxiliary carbon fibre tubes and provides a position to securely install the
motor mount and landing gear (Figure 18). A more detailed schematic of the quadrotor
corner is shown in Figure 20.

In addition to the quadrotor corner, Quaffle also contains 3D-printed parts to hold the
battery and to hold the rangefinder (Figure 21). These parts attach to the underside of
the polycarbonate central assembly (see Section 2.3.4). The battery holder comes in two
identical parts to hold the battery at both ends. Each of the two parts extends slightly
beyond the battery so that a screw may be used to prevent the battery from sliding out at
each end. However, the battery may be easily removed simply by removing one of the said
screws and sliding it out.

The rangefinder holder is a single part that is designed to fit the rangefinder. Two large
holes in the underside of the rangefinder holder are designed to accommodate the emitter
and receiver of the ultrasonic rangefinder.

2.3.4 Polycarbonate components

Polycarbonate parts play an important role in the chassis of Quaffle. The central assembly
consists of stacked layers of 3 mm thick polycarbonate cut using a water-jet cutter 22. Of
these, the bottom two layers firmly secure the carbon fibre main arms of the quadrotor to
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Figure 18: Diagram indicating the position of 3D-printed quadrotor corners on the Quaffle
chassis, highlighted in red.

Figure 19: Photograph of three quadrotor corners being printed using the Up! pp3dp.
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Figure 20: Schematic of quadrotor corner. Units are in millimetres.

Figure 21: Diagram indicating the position of battery holders (left) and rangefinder holder
(right) on the Quaffle chassis, highlighted in red.
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Figure 22: Diagram indicating the position of Arduino Mega mounting platform (left) and
polycarbonate portion of central assembly (right) on the Quaffle chassis, highlighted in red.

an aluminium core, providing a solid platform on which instruments and electronics can be
installed. The two layers secure the carbon fibre arms by sandwiching it with semicircular
clamps (Figure 23). Although the unidirectional carbon fibre tube is very resilient to axial
loads, it is weak transversely (Table 1); but the semicircular clamps, combined with the
relatively flexible nature of polycarbonate allow the forces to be distributed evenly, thereby
securing the tubes without damaging them.

An upper layer is designed to fit the Arduino Mega 2560 microcontroller. All the sensors
and instrumentation required for Quaffle are installed on the AeroQuad shield which is
directly mounted on the Arduino Mega board. Since this layer does not carry significant
load, polycarbonate was chosen for its light weight and aesthetic appeal. The design of this
layer is extremely similar to the other two layers in the central assembly. If needed, additional
layers similar to this can be stacked on top or on the bottom for extra instrumentation. There
is no limit to adding extra layers on top insofar as it remains a reasonable amount and does
not interfere with flight control mechanics. Adding extra layers on the bottom is very limited
due to the length of the landing gear and care must be taken so that the battery does not
hit the ground.

The space between the upper layer and the lower two layers can contain additional
batteries for powering specific electronic devices. The length of the edge of the lower layers
is slightly longer than the electronic speed controller, therefore allowing a snug fit when the
speed controller is attached to the side of the central assembly using tape.

The landing gear is also created using polycarbonate using the water-jet cutter (Figure
24). Polycarbonate was chosen for the landing gear because it is light, is resistant to impacts
(unlike acrylic, which is brittle and tends to shatter), is sufficiently soft to avoid damaging
ground surfaces, and has the aesthetic appeal of being transparent, thereby creating the
illusion of hovering even when sitting on the ground.

2.3.5 Metal components

While the use of metal is to be avoided in general to minimise weight, Quaffle does feature
some metal components. Notably, the crux of the central assembly is machined out of 4.8
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Figure 23: Render showing close-up exploded view of central assembly. The three polycar-
bonate layers from Figure 22 are clearly shown, as well as the semicircular clamps used to
secure the carbon fibre tubes.

Figure 24: Diagram indicating the position of the landing gear on the Quaffle chassis, high-
lighted in red.

Figure 25: Diagram indicating the position of central aluminium piece (left) and motor
mounts (right) on the Quaffle chassis, highlighted in red.
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Figure 26: Results of finite-element analysis of motor mount under axial load. For an applied
force of 10 N, the maximum deformation (left) is approximately 0.01 mm and the maximum
Von Mises stress (right) is 22 MPa. The deformation scale here in this figure is approximately
352. The material is mild steel. The simulation was done using Solidworks 2012.

mm sheet aluminium using the water-jet cutter. Obviously, it is very important for the core
of the aircraft to be as solid as possible or else each arm may wobble. The four carbon fibre
arms are secured to this aluminium piece using polycarbonate, as was described in Section
2.3.4.

The motor mounts are cut out of 20-gauge (0.75 mm thick) sheet steel using the water-
jet cutter. They are designed to enclose the entire motor because the motor shaft of the
motor that we purchased could not be reversed, so the motor could only be mounted at the
top, therefore requiring such a tall design because the carbon fibre tubes would not allow
otherwise. However, we shall see in Section 4.1 that this design causes issues with vibration.
A simulation for axial load was performed in Figure 26 and it was found that the motor
would not produce any significant distortion or stresses.
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Figure 27: Photograph of Arduino Mega 2560 microcontroller.

2.4 Electronic components

2.4.1 Overview of electronics

Selecting the appropriate electronic components for a quadrotor is challenging because of
the vast amount of options available on the market. Also, having selected the components
to use, we must then learn how to use them. A quadrotor flying vehicle requires several
essential electronic components:

1. A central processing unit to perform all the required computation.

2. Sensors to measure orientation and position.

3. Motors for propulsion.

4. Wireless communication for remote control.

5. Battery for providing power.

The constraints on our purchasing decisions include price, size, and weight. In each of
the following sections, we will discuss the specifications desired for the respective electronic
component.

2.4.2 Arduino Mega microcontroller

The Arduino Mega 2560 (Figure 27) is an open-source microcontroller that contains the
ATMega 2560 processor. We chose this microcontroller for several reasons, but primarily it
is because it is an open-source development platform, and therefore there are many software
libraries available to use. Importantly, most of the electronics used in Quaffle have Arduino
library support, so we can test our electronic parts without spending time implementing
drivers etc. It was mentioned in Section 1.3.1 that there are some open-source projects for
quadrotors designed for Arduino. As such, this choice of platform allows us to mitigate the
time spent reinventing the wheel. The programming language of Arduino is based on the
Processing programming language (which is in turn based on Java), which we are familiar
with. Other reasons to choose the Arduino Mega 2560 include affordability and the fact
that it has sufficient processing power for flight control (as demonstrated in numerous other
quadrotor projects).
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Figure 28: Photograph of SparkFun 9DOF inertial measurement unit.

Figure 29: Schematic of correct wiring for I2C devices [6].

2.4.3 Inertial measurement unit

The inertial measurement unit used in Quaffle is a SparkFun 9 degrees of freedom imu
(Figure 28). Despite the low cost and small size of the chip, it provides accurate orientation
measurement, especially when used in conjunction with a noise filter such as a Kalman filter.
The small size of the chip makes it easy to install on the quadrotor.

The SparkFun 9DOF imu communicates using a serial interface known as the inter-
integrated circuit (I2C). This protocol contains four lines: supply voltage, ground, serial
data line (sda) and serial clock (scl). The scl line is used for data synchronisation and
the sda line is used for data transmission. This method of serial interfacing is capable of
connecting to multiple devices just through the sda and scl lines. The number of devices
that can be connected is limited by the host device; in this case, the Arduino Mega 2560
allows I2C to connect up to 112 devices (the Arduino Mega 2560 contains 127 addresses, but
15 are reserved for internal operations). The sda and scl lines are ”open drain” drivers;
hence, in order to read high, it must be connected to a pull up resistor. The diagram in
Figure 29 demonstrates how to properly wire the I2C connection for multiple devices [6].

The AeroQuad software takes readings from the imu at a rate of 50 Hz. The sampling
rate should not be any higher because this ensures that the quadrotor is able to respond to
the new measurements before it takes the next measurements. The SparkFun 9DOF imu is
capable of up to 16 MHz sampling rate.

To read the data through I2C the software follows the following protocol sequence [6]:

1. Send start sequence.

2. Send I2C address of the device we are reading with the R/W bit set to low to indicate
we are writing to the device.
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Figure 30: Photograph of Turbojet 880 KV brushless motor used (rotor not shown).

Table 2: Specifications of Outrunner 880 KV brushless motor [7].
PWM duty cycle 25% 50% 75% 100%

Current (A) 1.5 6.1 14.2 20
Power (W) 17.5 70 160 210
Thrust (g) 230 650 1290 1380

3. Send internal register address that we would like to read.

4. Send a start sequence again.

5. Send I2C address of the device we are reading with the R/W bit set to high to indicate
we are reading from the device.

6. Read data byte from the device.

7. Send stop sequence.

2.4.4 Motors and electronic speed control

The rotors are the only actuator for a quadrotor, so it is essential to ensure that the rotors
can support the weight of the entire robot and have sufficient performance for flight. Our
target weight of the robot is about 1.3 kg. We chose 3-phase brushless motors because
of their excellent power output, small size, and light weight. The use of a electronic speed
controller (esc) allows the rotational speed to be adjusted more accurately using pulse width
modulation (pwm) on the voltage input.

To choose a proper brushless motor, we must first estimate the desired amount of lift
that the motor can generate, given the propeller size. A Turbojet 880 KV brushless motor
with a 12×45 propeller was chosen (Figure 30); the specifications for a similar motor, an
Outrunner 880 KV motor, are listed in Table 2 and used for analysis of motor characteristics
[7].

We determine the duty cycle required to lift our 1.3 kg quadrotor equipped with four of
these motors by multiplying the thrust in Table 2 by four. This is then plotted on a graph
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Figure 31: Graph of motor lift with respect to input duty cycle for an 880 KV motor with
12×45 propeller.

shown in Figure 31. For a simple approximation of lift with respect to duty cycle, we fit a
linear function. Using least-squares regression we obtain that:

F ≈ 58.24D (3)

where F is the total lift force (g) and D is the pwm duty cycle (percent). For the hovering
condition, F is set to be the weight of the quadrotor and we can calculate that the requisite
pwm duty cycle required is 22%. A higher duty cycle will allow the quadrotor to fly upwards;
however, limitations in total current will limit the maximum thrust.

To determine the amount of current that can be drawn, we also plot the total current
for the four motors against duty cycle in Figure 32. We use a quadratic least-squares fit to
interpolate between points, and we find:

I ≈ 0.006D2 + 0.2271D (4)

where I is the drawn current and D is the duty cycle. Using this, we determine that at a
duty cycle of 22% for hovering, it will draw about 7.9 A of current.

When we assembled the quadrotor and began tests, we found that the duty cycle required
for lift is 30% instead of 22%. The total current drawn varies from 10 A to 15 A. Two reasons
for the discrepancy between this and our theoretical values exist. Firstly, the specifications
used to derive our expected duty cycle and current are for a different model of motor (the
Outrunner as opposed to the Turbojet), which, despite being very similar, can still have
different performance especially seeing as the Turbojet is cheaper. Secondly, some parts of
the chassis of Quaffle may disrupt the airflow behind the propeller, such as the quadrotor
corner discussed in Section 2.3.3. This would reduce the lift and overall efficiency of the
system.

The Turbojet 880 KV brushless motor comes with a 30 A Turbojet esc (Figure 33). This
esc has the following list of features:
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Figure 32: Graph of motor current with respect to input duty cycle for an 880 KV motor
with 12×45 propeller.

1. Low resistance

2. High rate pwm

3. Support for up to sixteen cells

4. Soft start ramp up

5. Low torque start

6. User programmable brake

7. Auto motor cutoff with reset

8. Throttle range self-adjusting

9. Auto shut down when signal is lost

10. Low voltage auto setting based on battery

11. Safe power arming program ensures that motor will not run accidentally when aircraft
is powered on

The esc takes as input the controller pwm output and the main power from the battery;
and the output of the esc is the three-phase power to the motor (Figure 34). To reverse the
spinning direction of the motor, it suffices to switch two of the three wires for three-phase
power.
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Figure 33: Photograph of electronic speed controller for Turbojet 880 KV brushless motor
used (rotor not shown).

Battery

ESC MotorController
(PWM output)

12 VGND

Signal

5 V

GND
3-phase

Figure 34: Wiring schematic of electronic speed controller for Turbojet 880 KV brushless
motor.

2.4.5 Wireless communication

Quaffle can communicate with external devices using two methods. Firstly, we have a 2.4
GHz remote controller so that we can perform manual test flights before automatic flight
control has been fully developed. The remote controller that we use is a HobbyKing remote
controller with 7 channels. To connect this device to the quadrotor, we attach the 7-channel
receiver to the analog inputs on the Arduino Mega 2560.

To use this remote controller with the AeroQuad software, we configure the remote control
to AP mode for airplanes. For the left joystick, the vertical axis controls the average throttle

Figure 35: Photograph of HobbyKing 7 channel remote controller (left) and receiver (right).
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Figure 36: Diagram indicating the yaw, pitch, and roll directions for a fixed-wing aircraft
[8].

power of the four motors and the horizontal axis controls the yaw direction of the quadrotor.
For the right joystick, the vertical axis controls the pitch and the horizontal axis controls the
roll. These controls are analogous to that of a fixed-wing aircraft depicted in Figure 36.

The second form of wireless communication available to Quaffle is a 2.4 GHz Bluetooth
receiver. Whereas the aforementioned remote controller can only send analog data to Quaf-
fle, the Bluetooth chip can send digital information, making it suitable for communication
with a computer program such as the object recognition program described in Section 2.2.
Bluetooth allows 8 bits of data transfer at a time once the two devices have established the
connection. The controlling device is called the master, and the device being controlled is
called slave. Bluetooth on the quadrotor also allows any device with Bluetooth capability
to connect to it. This means that we can use our laptop and smartphone to control it since
most of these devices have Bluetooth enabled nowadays. To connect to a Bluetooth device,
we use the following procedure:

1. Enable Bluetooth on the slave device.

2. Use the master device to scan for the slave device.

3. When the slave device has been found on the master device, the master device will
require a 4-digit pin specified by the slave device. Then the connection is established.

Bluetooth has the advantage of being very cheap when compared to other types of wireless
serial communication. However, Bluetooth has a very limited range of operation (usually
limited to around 10 m). Also, there is typically some delay in receiving the data, which can
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Figure 37: Photograph of Bluetooth shield.

potentially be fatal to a flying robot. Despite these disadvantages, we will use the Bluetooth
shield (Figure 37) for early development purposes.

We have managed to develop a communication protocol to control the motor speed using
console input. For example, to set the duty cycle for Motor 1 to 20%, one enters motor 1

20. The source code for this can be found in Appendix A.

2.4.6 Battery

For a flying machine such as a quadrotor, the obvious choice of battery is a lithium ion poly-
mer (LiPo) battery. The LiPo battery has the highest energy density per weight amongst
affordable battery options, and are quite inexpensive. However, care should be taken when
charging and discharging LiPo batteries, since an overcharge can lead to a dangerous explo-
sion and an overdischarge can lead to other forms of battery failure. Hence, we use a specific
LiPo charger while charging the battery since these chargers have a voltage level monitor to
prevent overcharging.

In Section 2.4.4 we have determined that the motor draws about 10 A to 15 A of current
when in flight. For a target flight time of 10 minutes (0.167 hours), the desired battery
capacity would be around 1.6 Ah to 2.5 Ah. We also require a battery voltage of 11.1 V as
specified by the Turbojet esc.

Thus the battery of our choice is a 3-cell Zippy LiPo 11.1 V battery shown in Figure 38.
The battery capacity is 2650 mAh, exceeding our desired specifications. When a constant
15 A current is drawn, we measured that it lasts around 11 minutes before the battery level
runs below its failure level.

2.4.7 Installation of electronic instruments

We use the AeroQuad shield v2.1 (Figure 39) to combine the electronics. This shield is
specifically designed to stack on the Arduino Mega 2560 and provides an easy connection
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Figure 38: Photograph of 3-cell Zippy LiPo 11.1 V battery.

Figure 39: Photograph of AeroQuad shield v2.1. The labelled parts are: 1. Eight outputs
for regular pwm escs for brushless motors; 2. Three outputs for servo control; 3. Analog
inputs for other sensors such as an ultrasonic rangefinder; 4. Radio receiver channel inputs;
5. Connection pins for max7456 osd; 6. Connection pins for GPS.

to the Sparkfun 9DOF imu. The shield also contains pwm and remote receiver output pins
which allow us to save time wiring up the esc and remote control channel connections.
Ultimately, the shield provides an easy and clean connection to all lour electronic devices
which reduce the chance of human error and speed up the development of Quaffle.

For our prototype we have only used the pwm output and the radio receiver channel
input, as listed in Table 3.

2.4.8 Power distribution

The power distribution for Quaffle is very important since the motors draw a large amount
of current. For normal operation we expect a power draw of around 15 A for all motors, and
definitely not exceeding 15 A for each motor. Hence, we decided to use 20 AWG wires for
each motor. Also, to ensure that the esc operates safely, we have installed a 30 A fuse to
prevent any individual esc from drawing a current exceeding 30 A. The Arduino Mega is
connected directly to a separate 9 V battery. The reason for connecting the Arduino Mega
to a separate battery is because the Arduino always needs to be turned on before the esc
can be turned on to ensure that the escs are properly initialised by the Arduino board.
Figure 40 demonstrates how we wire the batteries to the electronics.
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Table 3: Connection of devices to AeroQuad shield.
AeroQuad shield pin Device connected

pwm 1 Front motor
pwm 2 Back motor
pwm 3 Right motor
pwm 4 Left motor
aile Receiver channel 1
elev Receiver channel 2
thro Receiver channel 3
rudd Receiver channel 4

11.1 V LiPo
Battery

9 V
Battery

30 A
fuse

ESC
1

ESC
2

ESC
3

ESC
4

Arduino
Mega 2560

Figure 40: Block diagram showing how we wire the batteries to the electronics. The thicker
red and black lines indicate 20 AWG wires.
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Figure 41: Screen capture of AeroQuad gui. This status display will provide information
from imu (Roll, Pitch and Yaw/Heading), esc speed (Motors 1, 2, 3 and 4) and the Radio
remote control joystick position.

3 Testing protocol

To successfully develop a working flying quadrotor, we need to have all onboard electronics
tested, calibrated and tuned. The Aerroquad software allows manual tuning for the pid
control; hence, we need to eliminate as many variables in our system as possible. We also
need to fly the quad-rotor to ensure the tuning parameters are correct by visual observation
of the flying performance. This section of the report will discuss the method we use for
testing, calibrating and tuning the electronics and flying the quad-rotor.

3.1 Electronics test, calibration, and tuning of control parameters

The AeroQuad configurator provides a gui program to help with setting up the quadrotor
for flight. The first step to set up the quadrotor is initialize the Electrically Erasable Pro-
grammable Read-Only Memory (eeprom) on the Arduino Mega. This is necessary to allow
the calibration and tuning data to permanently store in Arduino Mega processor. Once the
eeprom is initialized, we can then calibrate the imu, transmitter and esc. The purpose of
calibrating the imu is because the imu may not lie perfectly flat on the quadrotor; hence, the
quadrotor must be placed on a level flat surface during this calibration. For transmitter and
esc calibration, the AeroQuad only needs to check the range of input and output values.

The AeroQuad gui allows has a feature that allow developer to check the status of all
the electronic parts on the quad-rotor (Figure 41). With this feature, we can test all the
electronics easily.

The last step before putting the quadrotor to flight test is tuning the pid. The Aero-
Quad software uses a manual pid control which means there are proportional, integral and
derivative gain for every data point that needs to be calculated to control the speed of the
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Figure 42: Photograph of test station for rotation in one axis.

motor. In our case, the pid controlled data are roll, pitch and yaw. A rough value of pid
must be tuned because if these values are far from the ideal value, the quadrotor will be
impossible to fly properly.

The typical procedure to calibrate these pid values are first setting the integral and
derivative value to 0, then slowly increase proportion from 0. To tune the pid for one out
of three rotational axes, we need to fix the other two axes of the quad-rotor so that it is
constrained to move in only the axis of interest (Figure 42. Then, we adjust the pid value
of the free axis by slowly increasing the proportional value. For example, if we fix the yaw
and pitch direction, we can tune the roll axis pid value. We need to set the motor throttle
to lift off position, then we can try to change the roll by hand. With a proportion value
roughly close to the ideal value, we will feel some stiffness of from the roll axis because the
quad-rotor is trying to resist external forces. To mitigate or eliminate the oscillation of the
quadrotor trying to get back to balance, we have to adjust the derivative value. We can
produce the oscillation by manually pulling the roll axis off balance then let it try to recover
itself. We will observe a critical damping of the oscillation if the derivative value is correct.
We can do the same thing for the pitch axis to tune the pitch pid values. For tuning the
yaw axis, we have to let the quadrotor fly in midair and also adjust proportion value first
then derivative value. It is recommended not to adjust the integral value, we will adjust this
value only if the quadrotor start to get off balance and unable to recover over some period
of time.

3.2 Indoor flight test

The flight test is the most difficult part of this project because this is when the entire
control system put to work together. The first flight has a high chance of failing because it is
impossible for one to come up with the perfect model to simulate the entire control system.
With so many variables that could cause flight failure, it is a good idea to put protection
on the quadrotor during the first flight test and eliminate as much external disturbance as
possible.
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Figure 43: Photographs showing the takeoff of Quaffle to enter stable hovering. The three
frames are taken at 3 fps with a shutter speed of 1/40 s.

To minimize the external disturbance, we decided to test our robot indoors so that it is
not affected by wind. We also tie a string to each corner of the quadrotor so that it will not fly
out of bounds and consequently crash into any object in the indoor environment. However,
during our first few flight tests, the quadrotor can only hover for a few seconds before losing
balance immediately. A possible reason for instability is ground effects caused by extremely
low altitude hovering. Using digital cameras to record videos and images during the flight
test, we find that the propeller is susceptible to significant vibrations of a few centimetres
at its tips (Figure 44. This is another possible reason for poor flight performance. The
vibrations will be analysed quantitatively in Section 4.1.

4 Results and discussion

The project is intended to design a quadrotor flying machine and integrate the obstacle
detection program on it. We have not been able to integrate these two components due to
our limited time, so we will separate the discussion here into two parts: the design of the
quadrotor and object recognition.

4.1 Design of quadrotor

The entire quadrotor consists of three main parts: software, chassis, and electronics. The
AeroQuad open-source project was successfully installed in Quaffle. Porting the software to
Quaffle was very easy because has very similar hardware to the official AeroQuad quadrotor.

We have looked at the available lift that the motor we purchased can provide. With four
Turbojet 880 KV brushless motors and 45 × 12 propellers, the quadrotor can produce 1.3 kg
of lift at about 30% throttle input. At this rate, we measure that the motors will altogether
draw about 10 A to 15 A of current from the battery. The 3-cell Zippy LiPo 11.1 V battery
has a capacity of 2650 mAh and can provide about 11 minutes of flight time. Preliminary
testing show that the robot is capable of lifting off the ground easily. However, since we have
not had sufficient time to tune the pid control parameters to perfection, the robot can only
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Figure 44: Close-up of photograph of Quaffle hovering in mid air. Notice the path traced by
the white tips of the rotor against the dark background. The shutter speed is 1/40 s.

hover for a few seconds before losing balance.
The chassis has proven to be very strong. Even with some crashes from a height of 1 m,

the robot has survived with no noticeable damage. However, the motor mount is susceptible
to vibrations. In Figure 45 we find that the distortion under a 1 N horizontal load is 0.04 mm.
To calculate the natural frequency, we use the equation below, where keq is the equivalent
spring constant and meq is the equivalent mass, here assumed to be the mass of the motor.

ωn =

√
keq
meq

(5)

=

√
1 N/0.04 mm

110 g
(6)

= 477 rad/s (7)

≈ 4500 rpm (8)

The natural frequency of vibration, also known as the resonant frequency, is 4500 rpm.
The application of even a small oscillatory force close to the resonant frequency can yield
vibrations of a large amplitude. To find the angular speed of our motor, we observe that
there are four faint rotor trails visible in Figure 44 over a period of 1/40 s. Since the rotor
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Figure 45: Results of finite-element analysis of motor mount under transverse load. For an
applied force of 1 N, the maximum deformation is approximately 0.04 mm. The deformation
scale here in this figure is approximately 168. The material is mild steel. The simulation
was done using Solidworks 2012.

has two blades, we can estimate that the rotor has turned 2 revolutions in 1/40 s.

f =
2

1/40 s
(9)

= 80 Hz (10)

= 4800 rpm (11)

As we can see, the rotor velocity is close to the resonant frequency, yielding the vibra-
tions. It should be noted that the motor mount was not originally designed in this ”tall”
configuration - instead, it was supposed to be only a few millimetres above the quadrotor
corner. The motor shaft would then be reversed so that the motor could be mounted on the
bottom with the rotor on top. However, our attempt to reverse the shaft on the Turbojet
880 KV motor failed. With the ”short” motor mount, the spring constant keq would be much
higher, therefore moving the resonant frequency far away from the motor speed.

4.2 Object recognition software

During the four month period, a fairly accurate recognition software has been produced
by using the popular OpenCV library. the software is able to use three modes at user’s
request to do object recognition for recognizing any generalized pattern, facial recognition
for recognizing faces, or laser tracking for tracking bright spot. There are a few limitations
such as various ways of fetching images and computation power.

Since the camera has to fly with the uav, at first we thought of doing the abstruse
computer vision computation on the Arduino board. Given the low processing power of
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Arduino board, however, we had to offload the computation to a nearby computer with
a wireless camera. Due to the bandwidth issues with video streaming through a radio
frequency serial port, the image quality is rather low, which makes the object recognition
difficult. Without a high quality image, the surf method may not be able to extract enough
valuable key points for recognition. In addition, offloading images to a computer means there
has to be a ground station nearby wherever the uav is flying to, which is a major drawback
for autonomy.

Due to the nature of computer vision, it takes lots of computation power. The best
solution for our case is to get a high processing power micro-board of that is small and
light enough to fit on the Quaffle chassis. An example would be the motherboard of an
ultraportable laptop equipped with a powerful processor. Such a device would be ideal
since we will not need to offload images through radio to a nearby computer as the device
is sufficiently powerful to perform its own image processing. However, this is beyond our
budget.

5 Conclusion

The objective of this project is to design a quadrotor and to investigate the possibility
of using object recognition as onboard obstacle detection/object tracking for quadrotor.
With limited time frame for this project, we have not managed to succesfully integrate the
quadrotor with the object recognition software. However, we have successfully developed a
quadrotor prototype and a object recognition software separately.

After the four month period, our quadrotor is able to fly with a remote controller. It
is able to complete all of the manoeuvres we outlined in Section 2.1.1. The quadrotor may
be classified as a 4 channel aircraft: altitude, roll, pitch and yaw. We have also determined
that our robot is capable of hovering for around 11 minutes with the 3-cell LiPo battery we
chose for this project. We have not managed to achieve stable balancing of the quadrotor
when hovering. After some test flights while we tune pid control parameters, we determine
that the lifting speed at which the rotor spins is too close to one of the natural frequencies
of vibration, which causes the rotor to vibrate. To solve this issue, we must redesign the
motor mounts and possibly purchase smaller propellers and motors.

The object recognition software written in OpenCV is a complete software suite for our
Quaffle that is able to track any given object using surf method, any generic face using
hlf, any specific face using the integration of hlf and a neural network, and lastly any laser
point shining on a surface. The software is able to continuously run on an Intel Core 2 Duo
computer constantly recognizing four objects simultaneously with 65% of CPU usage, which
is a good result considering that computer vision requires a large amount of computational
power. The software was tested with a 720p (1280×720 pixels) usb camera. The recognizing
result has a 95% accuracy rate and 0.01% false alarm rate. If a wireless camera is used
instead, the accuracy would decrease dramatically due to the low quality of the camera and
bandwidth constraints on video streaming. A serial class has also been developed to output
the detecting result of the recognition software to the Arduino board. Our next step would
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Table 4: Summary of deliverables.
Deliverable Accomplished (Yes/No) Comments
Prototype flyable uav Yes Flyable with remote control
Separate software package
that can be installed and
used on any uav with Ar-
duino controller

Yes The software package can
be uploaded to any uav
with Arduino controller; a
second piece of C# ma-
chine vision software can be
installed on any computer
to perform real time object
recognition

Demo video of the perfor-
mance of our uav

Yes Footage of indoor test flight

Engineering recommenda-
tion report

Yes N/A

Documents describing all
components in the system

Yes N/A

Complete design drawings Yes N/A

be to devise an algorithm on the Arduino side to take input from the serial port and control
the aircraft accordingly when a target is found.

6 Project deliverables

6.1 List of deliverables

Over the four month period, we have completed all the goals that we have outlined in our
proposal. A summary of deliverables is shown in Table 4.

6.2 Financial summary

The financial summary is shown in Table 5. The total self-sponsored cost is $350.19 and the
total for the project lab is >$110.

6.3 Ongoing commitments by team members

Even though this project is self-sponsored, we would still like to improve Quaffle after the
ENPH 459 course is complete. We will continue to work on the following items, but not
limited to it:

1. Electrical
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Table 5: Financial summary of components used in Quaffle.
Component Quantity Total price ($) Purchased by
SPA 9DoF IMU 1 109.21 self-sponsored
Arduino Mega 2560 1 36.49 self-sponsored
AeroQuad shield v2.1 1 34.80 self-sponsored
Lithium polymer battery 1 9.42 self-sponsored
IMAX B6 charger/dis-
charger for LiPo

1 24.99 self-sponsored

Stackable Bluetooth shield 1 22.60 self-sponsored
880 KV Turbojet motor
with esc and bullet head

4 100.08 self-sponsored

12×45 Propeller (pair) 2 10.12 self-sponsored
9 V battery adapter 1 2.48 self-sponsored
9 V batery 1 N/A project lab
Wireless camera 1 55.00 project lab
Remote controller & re-
ceiver

1 55.00 project lab

3D printed parts N/A N/A project lab
Carbon Fibre tubes 2 N/A project lab
Aluminium, steel, and poly-
carbonate

N/A N/A project lab
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• Remote control test of the uav in an open outdoor environment.

• Tune pid control parameters to improve flight performance.

• Implement flight algorithm to allow autonomous flying without manual remote
control.

2. Object recognition

• Implement software to control camera rotation and stabilisation in flight using
servo motors.

• Add-ons for the flight control algorithm to take into consideration object recogni-
tion outputs. Once the signal has been sent from the object recognition software
confirming the target has been found, the uav will stop searching and fly towards
the target.

3. Mechanical

• Redesign of the landing gear to absorb more landing impact and increase ground
clearance to allow mounting of camera.

• Gimballed camera mount able to rotate camera in two axes.

• Styrofoam bumper for safety and to mitigate rotor damage in case of crashes.

• Cover for central assembly to protect electronic components.

• Redesign of motor mount to mitigate vibrations.

7 Recommendations

Since the Quaffle project is self sponsored, this section would be only intended for the further
candidate that might be sponsored by us to continue working on our uav project.

The main goal of the Quaffle for this limited four month period is to design, fabricate,
and prototype a flyable quadrotor vehicle that is able to fly, hover, and land safely. We
also wanted to develop a computer vision software that allows the aircraft to perform object
recognition, facial detection, and laser tracking. We have successfully completed our goal for
the four month period. There are many further development that we would like to see on our
Quaffle since it has a great potential for autonomous flying, surveillance, rescue, and even
for military applications. The following are a few goals for people who might be interested
in continue working on our project:

1. Total integration of the object recognition and flight control software.

Right now, flight control software does not take into any consideration of the result
of the object recognition. We recommend the integration of the two. For example,
when a target has been found, the uav would hover and track the target, and possibly
attempt to land on it.
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This objective is mostly implemented in software so the potential team should have
extensive programming experience. They should not only focus on the expansion of
the already existing object recognition software, but also write new classes in the flight
control algorithm to parse in serial results from object recognition and control the uav.
The objective should be completable within a 4 month period.

2. Further development on the uav

The Quaffle is a rather big machine to work with. It is possible that a smaller quadrotor
will be more manoeuvrable and easier to develop, so a smaller version of Quaffle using
smaller motors may be useful.

This objective has all of mechanical, electrical, and software design. The potential
team should compose of well-rounded engineering students, such as Engineering Physics
students. They should focus on the building and prototyping of a smaller version of
Quaffle while maintaining all of the functionalities. Circuit boards for various functions
such as power distribution can be created using the same design but smaller in size.
The software can be the same as the one currently being used, but with well-tuned
pid control parameters for stable flight. The objective should be completable within a
4 month period.

There is still a lot of improvement that we can make to Quaffle; with time, funding, and
good people, Quaffle has lots of potential to become the next generation of uav.
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Appendix A: Bluetooth Serial Communication Code

1 /∗
Pro j ec t : Qua f f l e − Quadrotor UAV

3 By : Anson Liang , Danie l L . Lu , Richard Lee
Date : Jan 16 , 2012

5

F i l e :Cmd. pde
7 − This f i l e conta in s f unc t i on s f o r communicating with Arduino
∗/

9

#de f i n e CMD DEBUG SERIAL 0
11

#de f i n e CMD STRING SIZE 16
13 #de f i n e CMDMAXARGS 5

#de f i n e CMDNUMCOMMANDS 7
15

17 #de f i n e CMD PRINT( arg1 , arg2 , arg3 , arg4 ) \
{ S e r i a l . p r i n t ( ”CMD: : ” ) ; S e r i a l . p r i n t ( arg1 ) ; S e r i a l . p r i n t ( ” ” ) ; S e r i a l . p r i n t ( arg2 ) ;

S e r i a l . p r i n t ( ” ” ) ; S e r i a l . p r i n t ( arg3 ) ; S e r i a l . p r i n t ( ” ” ) ; S e r i a l . p r i n t l n ( arg4 ) ;}
19

21 /∗ −−−−−−−−− g l oba l v a r i a b l e s −−−−−−−−− ∗/
char ∗ cmd ptr ;

23 i n t cmd len ;
i n t cmd argCnt ;

25 i n t cmd tr igger = 0 ;
i n t cmd args [ 5 ] = {0} ; // f i v e args max , ’ a ’ i s arg counter

27 i n t cmd motorInitFlag = 0 ;

29 extern i n t g l o b a l s e l e c t ;

31 enum cmd l i s t {
//This i s an enum of a l l the commands .

33 START,
ALT,

35 MOTOR,
IMU,

37 HOVER,
READY,

39 HELP
} ;

41

char cmd keyword [CMDNUMCOMMANDS] [ CMD STRING SIZE ] = {
43 ” s t a r t ” ,

” a l t ” ,
45 ”motor” ,

”imu” ,
47 ”hover ” ,

” ready” ,
49 ” help ”
} ;

51

/∗ −−−−−−−−− pub l i c f unc t i on s −−−−−−−−− ∗/
53

/∗
55 cmd Read ( )

− Read s e r i a l input from user
57 ∗/

void cmd read ( )
59 {

i f ( S e r i a l . a v a i l a b l e ( ) > 0 ) { // command length i s 6 bytes
61 delay (100) ; // A delay must take p lace to avoid s e r i a l read e r r o r
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char ∗ cmdbuf = ( char ∗) mal loc ( s i z e o f ( char ) ∗ CMD STRING SIZE) ;
63 char c = ’n ’ ;

i n t i = 0 ;
65 whi le ( S e r i a l . a v a i l a b l e ( ) && c != ’ \n ’ ) { // bu f f e r up a l i n e

c = S e r i a l . read ( ) ;
67 cmdbuf [ i++] = c ;

}
69

i = 0 ;
71 whi le ( cmdbuf[++ i ] != ’ ’ ) ; // f i nd f i r s t space

cmdbuf [ i ] = 0 ; // nu l l terminate command
73 cmd ptr = cmdbuf ;

cmd len = i ; // l ength o f cmd
75 char ∗ s ;

char ∗ argbuf = cmdbuf+cmd len+1;
77 i n t a = 0 ;

whi l e ( ( s = s t r t ok ( argbuf , ” ” ) ) != NULL && a <= CMDMAXARGS ) {
79 argbuf = NULL;

cmd args [ a++] = ( byte ) s t r t o l ( s , NULL, 0) ; // parse hex or decimal
arg

81 }

83 cmd argCnt = a ; // number o f args read

85 i f ( pCharSize ( cmd ptr ) != cmd len )
{

87 CMD PRINT(”Command Error ! ” , ”” , ”” , ”” ) ;
S e r i a l . f l u s h ( ) ;

89 cmd tr igger = 0 ;
re turn ;

91 }
cmd tr igger = 1 ;

93

i f (CMD DEBUG SERIAL)
95 {

CMD PRINT(”cmd : ” , cmd ptr , ”cmd len : ” , cmd len ) ;
97 CMD PRINT(”# arg : ” , cmd argCnt , ”” , ”” ) ;

f o r ( i n t i = 0 ; i < cmd argCnt ; i++) {
99 CMD PRINT(”arg ” , i , ” : ” , cmd args [ i ] ) ;

}
101 }

103 S e r i a l . f l u s h ( ) ;

105 }
}

107

/∗
109 cmd talk ( )

− t e l l Arduino what to do accord ing to what i s read
111 ∗/

void cmd talk ( )
113 {

i n t cmdIndex ;
115 f o r ( cmdIndex=0; cmdIndex<CMDNUMCOMMANDS+1; cmdIndex++){

i f ( strcmp ( cmd keyword [ cmdIndex ] , cmd ptr , cmd len ) ) break ;
117 }

//CMD PRINT(” cmdIndex ” , cmdIndex , ”” , ””) ;
119 switch ( cmdIndex ) {

case START:
121 // code f o r s t a r t ;

123 break ;
case ALT:

125 // code f o r a l t ;
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break ;
127 case MOTOR:

// code f o r motor ;
129 i f ( cmd motorInitFlag ) {

motor cont ro l ( cmd args [ 0 ] , cmd args [ 1 ] ) ;
131 } e l s e {

CMD PRINT(”CMD Error : p l e a s e i n i t i a l i z e system f i r s t ” , ”” , ”
” , ”” ) ;

133 }
break ;

135 case IMU:
imu setValue ( cmd args [ 0 ] , cmd args [ 1 ] ) ;

137 break ;
case HOVER:

139 hover command ( cmd args [ 0 ] , cmd args [ 1 ] , cmd args [ 2 ] ) ;
break ;

141 case CMDNUMCOMMANDS:
d e f au l t :

143 // i n v a l i d command
// handle i n v a l i d command here . . .

145 ;
}

147

}
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