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1 Abstract

Inertial parameters of vehicles are important for safety as they a�ect handling
and stability. The novel application of an onboard LIDAR sensor to the problem
of inferring vehicle mass, center of mass in the plane, and moments of inertia
in the roll and pitch axes is presented. The method relies on scan matching to
accurately resolve vehicle pose while generating a detailed model of the terrain
soas todetermine suspension traveldistance. Then, abatchoptimization isused
to determine the desired parameters.

2 Introduction

With the rise in proliferation of autonomous vehicles such as the Google Self-
DrivingCar [9], issuesof safety are increasingly relevant and important. In partic-
ular, determining the vehicle inertial parameters is important for e�ective con-
trol andaccuratemotionsimulation. Thesevehicleso�encontainaLIDARsensor
for localization and obstacle avoidance. As such, the LIDAR sensor is an obvious
choice for determining said inertial parameters.

Numerous studies have addressed the problem of determining inertial pa-
rameters in both the online and o�line settings by using a variety of di�erent
sensors and techniques. Rajamani and Hedrick proposed in 1995 a method for
inferring vehiclemassbyobserving the suspension, for examplebydirectlymea-
suring suspension travel using LVDTs [1]. Several studies have investigated solv-
ing this problem in the online setting with accelerometers using various filtering
techniques [2][3][4][5]. The present study uses base excitation dynamics, which
has also been studied by Pence et al in 2009 [6] using acceleromaters and in the
theoretical setting by Rozyn and Zhang 2010 [7] and Kolansky and Sandu [8]. My
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work ismost similar to that of Rozyn and Zhang [7] in that it uses a known terrain
profile and suspension parameters. However, to my best knowledge, there has
been no study using the LIDAR sensor to provide such a terrain profile.

3 Model and implementation

The problem statement is: Given LIDAR sensor input as point clouds sampled at
discrete time steps, the vehicle geometry (wheelbase L and track B), and sus-
pension sti�ness k and damping b, the output is themassm, the roll moment of
inertia Jr, the pitch moment of inertia Jp, and the center of gravity in the plane
cx, cy.

The model used is a three degree of freedom base excitation model, with
the state being pitch θ, roll φ, and bounce Z. It is assumed that the front and
rear suspensions behave linearly and have identical parameters kf = kr, bf =
br, and that unsprung mass is negligible. Furthermore, it is assumed that the
vehicle is travellingat amostly constant velocity forwards, and that roll andpitch
angles are small. No information about the yaw and lateral motion is obtained
or inferred.

Figure 1: Three degree of freedom base excitation model.

The equations of motion are

mZ̈ =
∑

i∈{fl,fr,rl,rr}

Fi (1)

Jpθ̈ = Tp = −cx(Ffl + Ffr) + (L− cx)(Frl + Frr) (2)

Jrφ̈ = Tr = cy(Ffl + Frl)− (B − cy)(Ffr + Frr) (3)
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where the forces Fi are given by a parallel spring damper approximation:

∀i ∈ {fl, fr, rl, rr} : Fi = −kZi − bŻi (4)

The algorithm used can be summarized as such:

• The generalized iterative closest point algorithm (GICP) [10] is used to de-
termine the relative transformation between synchronized and rectified
point clouds produced by the LIDAR sensor.

• At each time step, the suspension travel is determinedusing a ray shooting
method.

• Inertial parameters are inferred from the suspension travel as a function
of time.

The implementation of the GICP algorithm used in this study is provided by
the Point Cloud Library [11]. For ray shooting, the LIDAR sensor clearly cannot
see directly beneath the vehicle. As such, the point cloud is aggregated over 100
time steps (50 before and 49 a�er the current timestep) of 0.1 s each for a total
duration of 10 s. Vertical rays are computed from the known relative position
from the wheels to the LIDAR sensor, and all points within 20 cm of each ray are
obtained. The suspension travel distance is then determined by the median of
those points.

For inertial parameterestimation, thecost function isdefinedas theEuclidean
distance, for all time steps, between the le� and right sides of Equations 1, 2,
3, where the le� side is computed from twice numerical di�erentiation of the
pose data and the right side is obtained from Equation 4 using the ray shooting
method to determine Zi, where Żi is computed from central di�erences. A sim-
plexmethodprovidedbyMATLAB’sfminsearch function isused tosearchover
cx, cy to minimize this error while m,Jp, Jr are computed using least squares
given cx, cy.

4 Results

The algorithm is tested on the KITTI data set [12][13][14], namely Sequence 00 of
the Odometry data. The LIDAR point clouds are provided at a rate of 10 Hz, with
about 1.3×105 points per timestep. The sensor is a VelodyneHDL-64Emounted
atop a Volkswagen Passat B6 station wagon. It is known that for this vehicle,
L = 2.71m andB = 1.60m.
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Figure 2: LIDAR point cloud accumulated over 2 seconds. Note that 10 seconds are used
inactual experimentation (but it is notpossible toplot 10 secondsofdatadue tomemory
limitations).

Assuming that k ≈ 5 × 104 N/m and b ≈ 2 × 103 kg/s, and using (cx, cy) =
(1.3, 0.8)m as an initial guess, then the output of the program is:

Jp = 3.8× 103 kg m (5)

Jr = 3.4× 103 kg m (6)

m = 1.7× 103 kg (7)
cx = 1.1m (8)
cy = 0.9m (9)

These look like reasonablevalues since themass is expected tobeover 1400kg
[15] and the moment of inertia in the pitch axis is clearly much higher than the
one in the roll axis. The center of mass is close to the center of the vehicle and is
closer to the front than the rear, which is expected since the car is front-engined.

5 Discussion

From Figure 4, it is clear that the data is extremely noisy. This could significantly
a�ect the performance of the algorithm. The noise may arise from the fact that
the assumptions in the model might not hold if the vehicle is being driven ag-
gressively, or if there are nonlinear or hysteresis behaviour in the suspension.
The KITTI dataset’s data rate of 10 Hz is too low to capture high frequency be-
haviour in the suspension. Using an inertial measurement unit or a high fram-
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Figure 3: Vertical suspension travel over 444 seconds for all four wheels.

erate camera, the pose of the vehicle can be more accurately determined with
finer temporal resolution, allowing for better estimates of acceleration.

6 Conclusion

An algorithm is presented for the novel application of an onboard LIDAR sen-
sor to the problem of determining the mass, center of mass in the plane, and
moments of inertia in the roll and pitch axes. Testing on data on a Volkswagen
Passat B6 equipped with a Velodyne HDL-64E sensor resulted in values close to
expectations, despite the noisy nature of the data.
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Figure 4: Le� and right hand sides of Equation 3 over 4440 data points.
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